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Correlation function dependence of the scintillation behind a 
deep random phase screen 
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Royal Signals and Radar Establishment, St Andrews Road, Great Malvern, Worcestershire 
WR14 3PS, UK 

Received 25 April 1977 

Abstract. We investigate the role of the phase autocorrelation function in the generation of 
speckle, focusing and other scintillation effects produced when radiation is scattered by a 
deep random phase screen. New analytical formulae are obtained which reveal the 
mathematical origin of the observed physical phenomena, and these are supported by a 
range of numericaliy computed results. 

1. Introduction 

The characteristic pattern of bright and dark regions generated in the far field when 
coherent light is scattered by a rough surface and the changing intensity pattern 
produced on the floor of an illuminated swimming pool when the water surface is 
disturbed are, since the advent of the laser, equally familiar optical scattering 
phenomena. Neither phenomenon is peculiar to light scattering systems: both may be 
generated under the appropriate conditions when radiation of any frequency is scat- 
tered by a rough surface or phase screen, or propagates through a medium containing 
refractive index inhomogeneities. 

The first mentioned pattern, usually referred to as ‘speckle’, is an interference effect 
produced by the coherent addition of independent contributions from different parts of 
the scatterer and is only visible when certain coherence criteria are satisfied by the 
incident radiation. The spatial structure of this type of pattern is statistically related to 
the effective size of the illuminated region contributing to the scattered field. If this 
region gives many randomly phased contributions, as is often the case, then the field is 
Gaussian distributed with zero mean by virtue of the central limit theorem. 

The second phenomenon mentioned above is essentially a geometrical optics effect, 
arising from the focusing or lens-like behaviour of individual elements of the scatterer 
and is consequently visible in conditions of broad-band (e.g. white-light) illumination. 
The spatial structure of this type of intensity pattern is governed by the detailed nature 
of the scattering process; the statistics of the scattered field are non-Gaussian and the 
average contrast is typically greater than that of a speckle pattern. 

Whereas the time dependence of a moving speckle pattern provides useful informa- 
tion regarding motion of or within a scattering system through techniques such as 
intensity fluctuation spectroscopy (Cummins and Pike 1974), its spatial structure can be 
used only to deduce the effective size of the region contributing to the field at the 
receiver. Moreover, in the Gaussian limit, its single interval statistics merely reflect the 
fact that this field is a sum of many independent randomly phased contributions. With 
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the important exception of applications such as the measurement of stellar diameters 
(Hanbury-Brown 1968) these latter properties have therefore been studied mainly in 
connection with the role of speckle as noise in measuring and detection systems (Dainty 
1975). 

It is evident from the above remarks that scattering systems which give rise to 
non-Gaussian effects such as focusing are of special interest for two reasons. Firstly, the 
statistical and spatial coherence properties of the scattered radiation carry more 
information about the scattering mechanism than in the case of Gaussian speckle. 
Secondly, high contrast fluctuations present a more severe limitation on the perfor- 
mance of measuring and detection systems than speckle noise. One scattering system 
which can, in principle, generate both speckle and non-Gaussian scintillation 
phenomena such as focusing, is the random phase screen. This is a scattering layer 
which introduces phase shifts which vary randomly across the wavefront of the incident 
radiation. It is a system of long-standing interest, providing a basis for theories of, for 
example, ionospheric scattering of radio waves (e.g. Bowhill 1961), stellar scintillation 
at optical frequencies (Briggs 1963, Taylor and Infosino 1975) and radio frequencies 
(e.g. Singleton 1970), rough surface scattering (Beckmann and Spizzichino 1963), 
dynamic scattering in liquid crystals (Jakeman and Pusey 1975) and optical propagation 
through the atmosphere (e.g. Prokhorov et a1 1975). The mathematical formulation of 
the problem is straightforward and when the phase shifts introduced by the screen are 
equivalent to path differences which are short compared to the wavelength of the 
incident radiation (the ‘weak’ phase screen limit) solutions can be obtained by perturba- 
tion theory. This limit figures prominently in the literature and appears to be well 
understood. The opposite ‘deep’ phase screen limit has not received so much attention, 
being less amenable to both analytical and numerical methods of solution, but it is this 
limit in which contrasts in the intensity pattern can exceed the Gaussian value of unity. 

The severity of the mathematical problem involved in the scattering of a plane wave 
by a random phase screen depends not only on the size of the phase shifts introduced but 
also on the model adopted for the statistical and coherence properties of the phase 
function at the screen. Thus, for simplicity, and want of a better model, joint Gaussian 
phase statistics are almost always assumed, whilst early workers in the field also 
generally adopted a Gaussian model for the phase correlation function (e.g. Mercier 
1962). Until very recently calculations for an isotropic two-dimensional screen based 
on these assumptions had been carried out only for phase deviations equivalent to path 
differences of less than about half a wavelength of the incident radiation (Bramley and 
Young 1967) although numerical results have now been obtained for RMS phase shifts 
up to about 8 (Whale 1976). At the same time there have been various attempts to 
obtain analytical results valid for larger phase shifts in regions of special interest such as 
the focusing plane (Salpeter 1967). Most authors have only attempted to evaluate the 
field and intensity coherence functions of the scattered radiation and progress in 
understanding the mathematical structure of the problem has been made through 
analysis of the Fourier transforms of these quantities (Buckley 1971, Sbishov 1971, 
Taylor and Infosino 1975). However, the relationship between the mathematics and 
the observed physical phenomena is not emphasised in this work. More recently ‘power 
law’ phase correlation functions have been used leading to models characterised by an 
‘effective’ phase deviation which increases with propagation distance from the screen 
(Gochelashvily and Shishov 1975, Marians 1975, Rumsey 1975, Furuhama 1975). 

These models seem to have arisen through the use of the Kolmogorov spectrum for 
turbulence in theories of atmospheric propagation. They achieve certain simplifica- 
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tions in the mathematics but can only accurately model limited portions of the true 
phase autocorrelation function since they behave in an unphysical way at both large and 
small spatial separations. Indeed the role of the. phase autocorrelation function in 
determining the properties of the scattered radiation remains obscure. It is a particu- 
larly important aspect of the problem when the screen is deep, however, since the 
intensity pattern then becomes highly sensitive to the model adopted for the scatterer. 
Our own work (Jakeman and McWhirter 1976) has shown, for example, that a ‘facet’ 
model gives results which are qualitatively different from those obtained using a 
Gaussian model for the phase autocorrelation function. 

Accordingly, in this paper we calculate the contrast and spatial coherence function 
of the intensity pattern behind a deep random phase screen by developing approxima- 
tions in a ‘real-space’ formulation of the problem. These approximations both facilitate 
accurate numerical computation and allow the derivation of new analytical results in 
which the contributions of speckle and other scintillation effects such as focusing can 
easily be distinguished. We assume the phase function at the screen to be Gaussian 
distributed and consider three types of phase autocorrelation function, the present 
calculations being restricted to one-dimensional models for mathematical simplicity 
(two-dimensional results are presented elsewhere together with experimental data, 
Parry et a1 1977). Unlike most previous work we examine scattering configurations in 
which only a limited area of the phase screen is illuminated and obtain results in both 
Fresnel and Fraunhofer limits with respect to this area. The last mentioned limit 
frequently occurs in laser light scattering experiments (Jakeman and Pusey 1975) but is 
also relevant to certain microwave scattering problems (Jakeman and Pusey 1976, 
Jakeman et a1 1976). 

In the next section we set up the mathematical formalism used throughout the paper 
and establish certain general properties of the solution to the phase screen scattering 
problem. The following sections concentrate on the deep phase screen limit. Scattering 
of a plane wave by a phase screen of infinite lateral extent (the Fresnel limit) is treated in 
§ 3, where a number of new analytical and numerical results are obtained for the field 
and intensity coherence functions behind the screen using three different one- 
dimensional phase correlation functions. Section 4 similarly investigates the scattering 
of a focused beam into the Fraunhofer region and deals in addition with the angular 
dependence of the statistics. The principal steps in the mathematics are fully discussed 
in these two sections, more tedious aspects of the calculations being reserved for an 
appendix. The results and their implications are discussed in 0 5 and the main 
conclusions to be drawn from the work are summarised in § 6. 

2. Formulation of the problem and some general results 

In this section we introduce the mathematical notation used in the remainder of the 
paper. We set down the formal solution of the scattering problem in a Huygens-Fresnel 
approximation and establish some general properties of this solution. Finally we 
discuss the three model phase autocorrelation functions to be used in the work. 

2.1. Formal solution of the diffraction problem 

The formal solution of the scattering problem illustrated in figure 1 is given, in a 
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Detector Gaussian beam 
curvature a 

Figure 1. Scattering geometry. 

Huygens-Fresnel approximation by (e.g. Jakeman and McWhirter 1976) 

iEo(l + cos 8 )  
exp[i(kR -ut)] 

2AR 
8’(R; t )  = 

d2r’ exp[ikKr’2 - ikr’. r /R  + ic$(r’; t ) -  r’2/ w2]  

where 

$+(It; t )  is the positive frequency part of the scattered field or complex amplitude at the 
detection point R = (r,  z ) =  ( x ,  y, z )  at time t ,  A(=257/k) is the wavelength of the 
incident radiation, 4(r ,  t )  the phase fluctuation introduced by the screen at the z = 0 
plane, and where, for mathematical convenience, we have assumed that the incident 
beam has a Gaussian amplitude profile of width W and radius of curvature U. 
Time-dependent effects will not be considered in this paper and t will henceforth be 
dropped from the notation. The first-order (field) and second-order (intensity) coher- 
ence functions are defined in terms of the solution (2.1) by 

where A = (6, f )  = (,y, +, f )  and the intensity I is the square of the envelope of the field: 

I (R)  = 8 + ( R ) K ( R ) .  (2.4) 

Expressions for (2.2) and (2.3) simplify in two useful limiting configurations: 

kK W2 >> 1 

kKW2<< 1 (the Fraunhofer limit), 

(the Fresnel limit) 

We shall assume throughout BO 3 and 4 that 4 is joint-Gaussian distributed. If it is also 
stationary in a spatial sense with autocorrelation function 
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then the transverse (J = 0) spatial coherence functions are given in the Fresnel limit 

(2.8) 

(2.5) by ((4’) = 4;) 
lg% S)l = exp[-&(l -p(6))1 

ik 
Z 

1 “  
A z -cc 

g”’(z, a)=-[ d2rd2r’exp  -&F(r, r ’ ) - - r .  (r’+6))  (2.9) 

where 

We have set R = (0, z )  and f 1  = 0 in (2.8) and (2.9) without loss of generality in order 
to clarify interpretation of the results. 

Equations (2.8)-(2.10) provide the starting point for the analysis of 0 3. A number 
of general properties of the coherence functions (2.8) and (2.9) may be established 
without assuming a model for p ( r ) ,  however. Equation (2.8) is in fact a special case of 
the more general result 

F(r, r ’ ) =  2 - 2 p ( r ) - 2 p ( r ’ ) + p ( r + r ’ ) + p ( r - r ’ ) .  (2.10) 

Ig%, 611 = (exp[i(W)-  d(6))l) (2.1 1) 

which can be established from (2.1) in the Fresnel limit (2.5) for a stationary random 
phase function with arbitrary distribution (Booker et a1 1950). 

Unlike the field coherence function, the intensity coherence function (2.9) 
approaches the value unity as z + 0 since the intensity does not vary over the z = 0 
plane: 

g”’(0, 6) = 1. (2.12) 

By inspection, we also have 

p ( 2 ,  S)l = g”’(2, S) = 1 if = 0. (2.13) 

The last relation merely expresses the fact that, when no scattering screen is present, 
solution (2.1) describes (in the Fresnel region) the free propagation of a plane wave, i.e. 
the radiation remains coherent for all z .  

Some interesting results can be derived in the limit of large z by making the linear 
transformation r ’ +  6 + r ’Jz ,  r + rv‘z in equations (2.9) and (2. lo). Since, for a real 
stationary random process we must have 

lim p ( r )  = 0 
r+m 

(2.14) 

(i.e. all memory must be lost at sufficiently large sample separations), we can represent 
the asymptotic behaviour of p ( r J z )  when z is large by the two-dimensional Kronecker 
delta: 

(2.15) 

It is not difficult to show that the exponential factor in (2.9) containing the function 
(2.10) is then given by (X=exp(-&p(S))- 1) 
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Although the Kronecker delta's are non-zero over a set of points of measure zero, Dirac 
delta functions arising from the remaining exponential factor in (2.9) ensure finite 
contributions to the integral from all but the final group of terms appearing in (2.16). 
The result obtained is 

(2.17) lim g'*'(z, S )  = 1 + /g(')(z, & ) I 2  - exp(-2&) 
z -800 

where lg(')(z, S)l is given by (2.8). 
Equation (2.17) is identical to a formula first derived by Mercier (1962) and reduces 

to the factorisation theorem for a zero mean circular complex Gaussian process when 
&, is large. It appears to be a particular manifestation of a more general result which 
holds far from the scattering screen in the Fresnel limit provided that (2.14) is satisfied. 
This can be deduced using a simple intuitive argument with the help of figure 2 (see also 
Jakeman and Welford 1977). Because of (2.14), sufficiently far from the screen the 
scattered field is composed of many independent contributions of varying phase and 
amplitude. In the Fresnel limit these add with a systematic phase factor (the second 
term in the exponent on the right-hand side of (2.9)). When the screen introduces large 
random phase shifts this systematic factor will be unimportant by comparison with the 
large random changes of direction associated with each contribution. The scattered 
field is then the resultant of a two-dimensional random walk and will be Gaussian 
distributed with zero mean by virtue of the central limit theorem. When the phase 
screen is weak, the systematic phase factor imparts a spiral structure to the vector 
addition as illustrated in figure 2. The mean value of the resultant complex amplitude is 

I 
Figure 2. Vector addition of independent contributions to the scattered field in the Fresnel 
limit. 

non-zero in this case. Since there are many contributions and many turns of the spiral, 
however, the real and imaginary part of this vector will again be Gaussian distributed, 
uncorrelated with equal variances (shown by arrows in figure 2). By analogy with the 
problem of homodyne detection in the presence of Gaussian noise (Rice 1944) the 
intensity of the resultant field will be Rice distributed (Re denotes real part): 

exp[-(I + I( %+)1*)/2 Var(Re %+)I 
2 Var(Re %+) 

lim P( I )=  
z -800 

with moments given by (e.g. Jakeman and Pike 1969) 

(1") lim n= n![2 Var(Re %')]"L.( 
z - m  (I) 

(2.19) 
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In these expressions $+ is the asymptotic value of the complex amplitude at large 
distances from the screen, lo is the zeroth-order modified Bessel function of the first 
kind and L, a Laguerre polynomial of degree n. The parameters entering (2.18) and 
(2.19) may be evaluated by observing that in the Fresnel region (2.5) the mean intensity 
is independent of distance from the screen. Normalising this quantity to unity, without 
loss of generality, and using the fact that the variances of the real and imaginary parts of 
8’ are equal we obtain 

Var(Re 8+) = $( 1 - I( 8’)l’). (2.20) 

The remaining unknown parameter I(%+)[ can be evaluated directly from (2.1) in the 
Fresnel limit without further approximation. The result, after appropriate normalisa- 
tion, is 

I(S+>l = I(exp(i4Nt. (2.21) 

Equations (2.18)-(2.21) provide a complete description of the first-order statistics of 
the intensity pattern far from the phase screen in the Fresnel limit (2.5). They are valid 
for arbitrary phase statistics and coherence properties provided only that 4 ( r )  is 
spatially stationary and entirely random so that (2.14) is satisfied. The higher-order 
statistical properties of the intensity can also be obtained by analogy with the theory of 
homodyne detection in the presence of Gaussian noise (the moment generating 
function for the joint distribution of intensities is given in e.g. Jakeman 1970). Since the 
real and imaginary parts of 8+ constitute a circular complex Gaussian process, the only 
new parameter entering into these properties is the first-order coherence function (2.2). 
It is not difficult to show, for example, that the intensity coherence function is given by 

(2.22) 

where g(’)(z, 6) is defined by equation (2.11) and I(%+)/ by equation (2.21). Note that 
the results (2.18)-(2.22) reduce to those of Mercier (1962) when 4 is Gaussian 
distributed. 

Turning now to the Fraunhofer limit (2.6), we shall assume that the detection points 
are equidistant from the scattering region with R, R +A and the x component of R in 
the same plane. Only the angular positions el, 62 of the detection points will appear in 
(2.2) and (2.3) in this case and the un-normalised form of these coherence functions 
may, when 4 is Gaussian distributed, be written 

(1(61)1(&)) = .rrW’1E01~(1 +cos e1)’(l +cos 82)’/16A4R4 J d’r‘ d’r” d’r”’ 
-m 

,.rZ + ,.h? + rw2 

W’ 
x exp( -&G(r‘, r*, r”’)+ik(x”U+x”’V)- 

(2.23) 

(2.24) 
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where 

G(r', r", r"') = 2 - p(r"  + r"')- p(r"- r'")- p(r"+ r') -p(r'' - r' )  + p ( r '  + r"')+ p(r' - r"') 
(2.25) 

and 
U = sin dl +sin 02, V = sin el -sin 6 2 .  (2.26) 

The analysis of 8 4 is based on equations (2.23)-(2.26). As in the Fresnel limit 

ig(lYe1, e2)1 = g(*)(el, e,) = 1 if & = O  (2.27) 

reflecting the fact that the solution (2.1) describes (in the Fraunhofer region) the 
propagation of a coherent beam of radiation of Gaussian amplitude profile far from its 
waist. Unlike the Fresnel limit it is difficult to obtain reduction of the formulae (2.23) 
and (2.24) in other more interesting situations because of the subtle interplay between 
the RMS phase deviation q50 and the effective number of contributions to the random 
walk problem which is dependent on W and the detailed behaviour of p ( r ) .  This 
problem has been studied by Goodman (1975) and in more detail by Jakeman and 
Welford (1977) in the context of speckle in imaging systems. We note here only that if 
W is so large that there are many independent contributions to the scattered field (but 
still satisfies (2.6)), and 40 is also much greater than unity so that these contributions are 
randomly phased, then we might expect the scattered field to be Gaussian distributed 
with zero mean and the coherence functions to satisfy the factorisation relation 

(2.28) 

We shall find later that in fact certain additional criteria must be satisfied for this result 
to be valid in the case of scattering by a random phase screen, in contrast to particle 
scattering situations frequently encountered in photon correlation spectroscopy, for 
example, when Gaussian statistics apply to a high degree of accuracy (Jakeman et a1 
1968). 

g(2)(e1, e,)= 1 + Ig(l)(el, e,)/,. 

2.2. Phase autocorrelation functions 

In order to progress further with the evaluation of (2.8)-(2.19) or (2.23)-(2.24) in 
general situations a model must be assumed for the phase autocorrelation function 
(2.7). In the next two sections we investigate the following one-dimensional models: 

( a )  truncated parabolic 

Ix1<5 
otherwise 

(2.29) 

(b) truncated linear 

(2.30) 
b1<5 p( r )  = { - 'x ' / '  
otherwise 

( c )  Gaussian 

p ( r )  = exp(-x2/12). (2.3 1)  
The first two models, though characterised by an unphysical cut-off, do have the merit 
of satisfying (2.14). The truncated parabolic correlation function does not appear to 
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have been used explicitly in previous calculations although Fried (1965) has pointed out 
that without the cut-of this model is equivalent to a planar phase front with random tilt. 
The detected intensity in the Fresnel region is evidently constant in this case: in 
equation (2.9) F(r, r‘)  vanishes for all r, r’ so that g”’(z, 6) = 1.  We shall find that the 
truncated form (2.29) leads to more interesting results and in fact corresponds to a 
one-dimensional analogue of the ‘facet’ model considered in our earlier publications. 

Both the parabolic and linear correlation functions are, in the absence of the cut-off, 
special cases of the power law structure function l-p(r)=(ar)” investigated by a 
number of authors (Gochelashvily and Shishov 1975, Marians 1975, Rumsey 1975, 
Furuhama 1975) and lead to an intensity coherence function which depends on the 
single parameter &(az/k)” in the Fresnel limit. Although truncation is essential in the 
case of the parabolic function (2.29) if non-trivial results are to be obtained (at least in 
the Fresnel limit), we shall establish that in the case of the linear correlation function 
(2.30) truncation has no effect on the calculations in the deep phase screen limit 40 >> 1. 
Our calculations are a one-dimensional analogue of those of Marians (1975) in this 
limit. It must be emphasised, however, that if 40 is not large truncation does have an 
effect on the predicted coherence properties because of the increased sensitivity of the 
results to the tail of the phase autocorrelation function. In particular, since an 
unmodified power law structure function fails to satisfy the physically reasonable 
memory condition (2.14), its use when do is not large may lead to incorrect results, at 
least in the asymptotic region far from the screen where we have shown (2.17) for 
example to be a direct consequence of this condition. 

As we mentioned in the introduction, most early theoretical work on the phase 
screen scattering problem was based on the Gaussian phase autocorrelation function 
model (2.31) (e.g. Mercier 1962, Salpeter 1967, Bramley and Young 1967). Unlike the 
power law structure function, which derives from theories of turbulence, however, 
(2.3 1) appears as a rather ad hoc assumption. On the other hand, it does have the merit 
of satisfying (2.14) and also behaves in a physically reasonable way for small values of its 
argument. This is a particularly important property (again not shared with the 
unmodified power law structure function) when 40 is large because the behaviour of the 
coherence functions (2.2) and (2.3) is then largely governed by the behaviour of p ( r )  
near the origin. For this reason Buckley (1971) investigated the spectrum of intensity 
fluctuations and scintillation index in the deep phase screen limit 40>> 1 using a 
‘multi-scale’ phase autocorrelation function whose expansion near the origin is 

(2.32) 
Although his interpretation of the expansion coefficients appears to be non-unique the 
approach allowed him to derive many new analytical results and provided useful insight 
into the mathematical structure of the problem. In the present paper we consolidate 
this work by a combination of new numerical and analytical techniques and establish a 
connection between the various terms in our formulae and observed physical 
phenomena. 

p(r)=  1-cur2+pr4-yr6+. . . . 

3. The Fresnel limit 

In this section we evaluate (2.8) and (2.9) for the three correlation functions (2.29)- 
(2.31) assuming throughout that 40 >> 1. Approximations taking advantage of this 
inequality will be made on occasion and we shall imply by the statement ‘to order l/40’ 
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for example, that terms of this magnitude and smaller (i.e. higher powers of &*) have 
been neglected. In order to clarify the mathematics we shall calculate the contrast or 
scintillation index 

s = g y r ,  0)- 1 (3.1) 

before evaluating g'"(z, A) in each case. 

3.1. Truncated parabolic correlation function (model (a) of P 2.2) 

For large 40 the field correlation function is given everywhere to order exp (-4;) by 

Ig'')(z, x)I = exp(-&x2/t2) (3.2) 

where we have taken 6 = h, 0) in (2.8). The scintillation index defined by (3.1) and 
(2.9) may be evaluated by dividing the region of integration into areas according to the 
truncation of p ( r )  as illustrated in figure 3 and using the symmetry in n and x'. Thus in 

X 

f 

X 

c 
Figure 3. Regions of integration in the Fresnel limit. 

region 1 x + x ' s  5, Ix -x'l < 5; x' < 5, x < 5 so that F(x, XI)= 0. The contribution to 
g'2'(r, 0) from this region may be evaluated in terms of Fresnel integrals (Abramowitz 
and Stegun 1965) by a transformation to sum and difference coordinates a = x +XI, 
b = X  -XI :  

In region 2 we have x + X I >  5, Ix - - X I [  > 6 and either x > 5, x' < 5 or x < 6, x' >( so that 
F(x, x') = 2xI2/r2 or 2x2/ t2  respectively. The contributions from these two regions are 
clearly equal and the total is given by 

I 2  =?! 1' dx' 
r z  0 

(3.4) 

It is shown in appendix 1 that if q50>> 1 and k,f2/r&<< 1 little error is incurred if the 
upper limit of the first integral is extended to infinity and X I  set equal to zero in the lower 
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limit of the second integral. This leads to the result 

where erf(x) is the error function of argument x (Abramowitz and Stegun 1965). 
Contributions from the remaining areas illustrated in figure 3 are shown in appendix 1 
to be negligible in this approximation and the scintillation index is therefore 

S = 1 - 2 erf(&i) + 2[ C2( ( z)’l2) +S2( (g) 2 m  ‘I2)]. (3.6) 

This quantity is plotted as a function of z for various values of 4: in figure 4. 
The spatial coherence function (2 .9)  may be evaluated using a similar procedure but 

noting that there is in this case no symmetry about the line x = x’ in figure 3. The 
contribution from region 1 is again most simply expressed in terms of sum and 
difference coordinates: 

k I1 = - I E da I-: db exp( E[$(a2 - b2)+ (a + b ) ~ ] )  
4 T Z  -e 22 

= ?{ 2 [ c ( ( b  +*I($) T Z  l/,) + +s -A($) T Z  73’ 
+ [ S((5 +*I( &) 112) + s( (b - *)( &) 1’2)3 7 .  (3.7) 

The contribution from regions 2 is now the sum of two unequal integrals 

I$,” = - 2k I ‘ dx’ IxzE dx cos( y)  cos( +) exp( - 24:xr2 t 2  ) 
dx’ cos( 5) cos( 5) exp( - 7). 2 4 b 2  

7Tz 0 

(3.8) 

I I I I 

Figure 4. Scintillation index against distance from the screen for the values of 4; shown: 
truncated parabolic phase autocorrelation function, Fresnel limit. The height of the peak is 
already nearing saturation when 4; = 10‘. 
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As before, provided q50 >> 1, the upper limit of the first integral in each of (3.8) may be 
extended to infinity and the lower limit of the second set equal to 5 without incurring 
serious error. To order 1/q50 we then obtain (Re denotes real part) 

and finally, since the contributions from all other regions are negligible to this order 

(3.10) 

This formula is plotted as a function of ,y for 4; = 100 and various values of 22/kt2 in 
figure 5 .  (lg'''(2, x)l is given by (3.2).) 

I I I 

3.0 -I 

lot 1 t i 
Figore 5. Spatial coherence function of intensities for values of 22/kt2 indicated by arrows 
in figure 4: truncated parabolic phase autocorrelation function, Fresnel limit & = 100. 

3.2. Truncated linear correlation function (model (b) of P 2.2) 

In this case the field correlation function is given to order exp(-4;) by (6 = (,y, 0)) 

Ig%, x)l = exP(-4;lxlo. (3.11) 
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The scintillation index may again be expressed as the sum of several contributions 
corresponding to the areas illustrated in figure 3. In area 1 F(x, x ' )  = 2x/5 if x < x '  or 
2x'/5 of x > X I  and the contribution from this region of integration is thus 

4k '" 
( 24;') cos ("I) - . 11 =- J dx' Jxrx' dx exp -- 

0 
(3.12) 

It is shown in appendix 2 that extending the limit of the first integral to infinity incurs an 
error of order exp(-4:). In region 2 F(x, x ' )  = 2 4 5  if x < x '  and 2x'/5 if x > X I  so that 
the contribution from this region is 

(3.13) 

Again the upper limit of the first integral may be extended to infinity (appendix 2) and 
combining Il with I2 we obtain 

+ 12 = % J dx' Jxm dx cos( F) exp( - 7) 2&x' 
77-2 0 

-8 J $ cos( y )  sin( $) exp (- 7). 2&x' 
7 0  

(3.14) 

It is shown in appendix 2 that the last integral in (3.14) may be neglected if q+o >> 1, and 
that contributions from the remaining areas of figure 3 are also negligible in this limit. 
From (3.14) we then have 

4k O0 2& 
s + I = -  r z  J 0 dx' J X Y d x c o s ( Y ) e x p ( - T ) .  (3.15) 

The right-hand side may be expressed in terms of Fresnel integrals and the scintillation 
index is then given by 

(3.16) 

A plot of this function is shown in figure 6. 
The spatial coherence function may be evaluated following a similar procedure. 
As in case ( a )  ($3 .1)  it is necessary to further subdivide the regions of integration 

illustrated in figure 3 according as x is less than or greater than x '  because of loss of 
symmetry when ,y f 0. The contribution from region 1 is the sum of the integrals 

I\') = J '" dx' /xrx' dx cos( ?) cos( 7) kx'x exp( - 7) 2&x' 

I ~ 2 ) = ~ / ' ' 2 d x ' / x ~ x ' d x  c o s ( ? ) c o s ( ~ ) e x p ( - ~ )  2& 
r.7 0 

(3.17) 

r z  0 

whilst the contribution from region 2 is the sum of the integrals 

I:"=-/'dxiJx16 2k dx cos(?) cos(?) e x p ( - T )  2&x' 
0 

(3.18) 
1 2  (')- -- 2k J' dx I dx cos(!$) cos(?) e x p ( - T ) .  

.irz 0 
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In I ~ @ ~ , l / k ~ ~ l  

Figure 6. Scintillation index against distance from the screen: truncated linear phase 
autocorrelation function, Fresnel limit. 

The four sets of integrals (3.17t(3.18) may be evaluated to the same order of 
approximation as before by extendin the upper limit of the first integral in each 

derivation of equation (3.16). The results are most simply expressed in terms of the 
spatial frequency w : 

expression to infinity and combining 8) with 1;” and fi2) with &2) as described in the 

(3.19) 

where lg(’)(z, x)l is given by (3.11). Fourier transformation of this quantity gives the 
frequency spectrum in terms of elementary functions: 

Formula (3.19) depends only on 4&l/f and the parameter 4$/kZ2 and is plotted in 
figure 7. The frequency spectrum (3.20) is also shown in figure 8 in order to allow 
comparison with the work of previous authors. 

3.3. Gaussian correlation function (model (c) of P 2.2) 

When 40 is large the field correlation function (2.8) for this type of correlation function 
is given to order exp(-4:) by (6 = (,y, 0)) 

Ig(’)k x)l = exp(-&x2/f2) (3.21) 
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0 a 16 2 L  
60$ x I 4  

Figure 7. Spatial coherence function of intensities for valuesof 
in figure 6: truncated linear phase autocorrelation function, Fresnel limit. 

indicated by arrows 

I I I 

I I 
0 1 2 

w / l z / k l  

Figure 8. Spectrum of intensity fluctuations 3 = In(J(k/z)S'2'(o)) for truncated linear 
phase autocorrelation function in the Fresnel limit, plotted for comparison with the results 
of Marians (1975). The parameter U = 2~5i./(z/k(~) relates each curve to a position on the 
scintillation plot, figure 6. 

which is identical to the result (3.2) obtained in the case of the truncated parabolic 
function (case ( a ) ,  0 3.1). Evaluation of the scintillation index is not so straightforward 
as in the preceding examples since figure 3 is no longer relevant in the absence of 
truncation. The main contributions to S still come from regions near the x - x '  axes, 
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however, More precisely they arise from regions where the function 

~ ( x ,  X I )  = 2 - 2 exp(-x2/t2)- 2 exp(-xf2/t2)+ exp[-(x + X ’ ) ~ / ~ ~ I  

+ expi-(x - X ’ ) ~ / ~ ~ I  (3.22) 

is minimum. It is readily shown that the derivatives aF/ax and aF/ax’ both vanish for all 
x ’  if x = 0 and also for all x if x ’  = 0, i.e. along the axes. Taking advantage of the 
symmetry in (2.9) we see that the scintillation index can be expressed in terms of an 
integral over the lower half quadrant shown in figure 3. In this region we approximate 
F(x, x ’ )  by the second-order Taylor expansion 

x t 2  d2 
2 dx x‘=O 

F(x, x ’ )  = F(x, O)+- -F(x, x ‘ )  1 (3.23) 

so that 

This approximate formula is extremely accurate even for moderate values of 4o and 
greatly facilitates numerical computation of the scintillation index. Plots of S against 
normalised distance from the screen are displayed in figure 9 for various values of 4; 
together with numerical results obtained by previous authors. 

L 

S 

Figure 9. Scintillation index against distance from the screen for the values of 4; shown: 
Gaussian phase autocorrelation function, Fresnel limit. The lowest curve (4; = 8) is 
indistinguishable from the result of Whale (1973). The broken curves correspond to the 
analytical formula (3.34) of the text. 

(3.24) is relatively insensitive to the function of x appearing in the exponent of the 
integral. In order to proceed further, therefore, we model this function as follows 

(3.25) 
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so that 

1615 

€143 
S + 1 = 4k I dx lox dx‘ c o s ( y )  exp( - 

IT.? 0 

(3.26) 

The substitution x ’  = t / x  in the first integral followed by an integration over t by parts 
reduces it to the form 

It  = -% Im dx ln($) cos($) e x p ( - T )  6&x2 
IT.? 0 

(3.27) 

where the upper limit has been extended to infinity incurring an error of order exp(-4;) 
only. (3.27) is evaluated in appendix 3 to give 

Here erfi(q) is an error function of imaginary argument (Erd6lyi 1953): 

L -  
erfi(4) = 7 J dx exp(n2), 

T o  

whilst 
4 

R(q)= 4 1 exp(n2) dx exp(-y2) dy 
0 

(3.28) 

(3.29) 

(3.30) 

satisfies the inequality 

(3.31) 
y = ec -- 1.781 where C is the Euler-Mascheroni constant, and, for compactness of 
notation, we have introduced the dimensionless reciprocal length parameter 

q = k[2/2zcp~J6. (3.32) 

The second double integral appearing in (3.26) can be evaluated by noting that an error 
of only exp(-4;) is introduced by extending the upper limit n to infinity. We obtain 

1 2  = 2 erfc(q) = 2[ 1 - erf(q)] 

and finally 
(3.33) 

This result is compared with results obtained by direct numerical evaluation of (3.24) in 
figure 9. 

Numerical computation of the spatial coherence function (2.9) is also greatly 
facilitated by using the Taylor expansion approach described above. Because of the 
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asymmetry introduced with respect to the line x = x’ in figure 3 the two half quadrants 
must be considered separately. We obtain after some manipulation: 

(3.35) 

This quantity is plotted as a function of x for 4; = 100 and various values of 2z/k,f2 in 
figure 10. To proceed further analytically we again use the model (3.25): 

(3.36) 

These integrals are evaluated to the usual order of approximation in appendix 3 but the 
resulting expressions are lengthy and will not be presented here. An instructive limiting 
situation in which relatively simple but useful formulae may be obtained occurs when q 

t 
Figure 10. Spatial coherence function of intensities for values of 22/kt2 indicated by arrows 
in figure 9: Gaussian phase autocorrelation function, Fresnel limit, I& = 100. The open 
circles correspond to the analytical formula (3.37) of the text. All curves saturate at unity 
for sufficiently large values of x.  
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(equation (3.32)) is small. Retaining only the terms from (3.36) which are significant in 
this limit we obtain (appendix 3) 

(3.37) 

where El(x) and Ci(y ) are the exponential and cosine integrals respectively (Erdtlyi 
1953) and lg(')(z, x)l is given by equation (3.21). A comparison of this formula with 
numerically computed results is given in figure 10. 

4. The Fraunhofer limit 

In this section we evaluate the field coherence function, scintillation index and intensity 
coherence function for the three one-dimensional phase correlation functions (2.29)- 
(2.31) in the Fraunhofer limit (2.6). It will again be assumed throughout that do >> 1 and 
further, that 6 < W. In order to obtain analytical results in some cases we shall consider 
only the limit f << W. This condition, though more restrictive than 5 < W is nevertheless 
a commonly occurring situation in practice. 

4.1. Truncated parabolic correlation function (model (a) of 0 2.2) 

Neglecting the cut-off at x '  = f in the phase correlation function appearing on the 
right-hand side of (2.23) incurs an error of only exp(-+i) and the integral may be 
evaluated to this order of approximation to give 

k U z f 2  
xexp -- ( 1 6 4 ; )  

so that the mean intensity and field coherence function are given by 

and 

(4.1) 

The scintillation index is obtained from (2.24) with V = 0, i.e. 8' = O2 = 8. Evaluation of 
the integrals is accomplished by dividing up the region of integration according to the 
truncation of the phase correlation function. Since this is a function only of the x 
coordinate (2.24) reduces to a volume integral and the symmetries of the integrals imply 
that only the first octant need be considered. Inspection of (2.25) indicates that the 
main contributions to the integral come from regions near the x ' - x " '  plane when 
&,>> 1.  Note, moreover, than when x " = O  (2.25) reduces to (2.10), i.e. G(r', 0, rrr')= 
F(r', P). Thus we expect the principle contributions to (2.24) to originate from regions 
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near the x ’  and x“’ axes as in figure 3. These regions are sketched in figure 11. The 
central region is a tetrahedron whose edges coincide with the axes and the lines 
x ’ +  x ”  = x ’  + x”’ = x ” + x ” ’  = 5, Within this region G(x‘, x” ,  x ’ ” )  = 4 ~ ” ~ / 5 ~  and its con- 
tribution to the integral (2.24) is 

P E  p 6 - x ”  r €-x” -x“ ’  

Il = A (e, e )  J dx” J dx“’ dx’ cos(2k.x” sin e) 
0 0 0 

5 5 f 2  where A(&, e,)= lEo14(l+cos 61)2(l+c0s &)’W 7r / 2h4R4 .  The factor 
exp(-xff2/ W2) may be set equal to unity and x“  set equal to zero in the limits of 
integration to order (5’/ W2& (which is small if q50 >> 1 and 5 W). (4.4) can then be 
integrated to give 

X ‘  

2 

? 
\ 

/ x  ” 

Figure 11. Regions of integration in the Fraunhofer limit. 

In the region 2 of figure 11 which lies along the x ’  axes G(x‘, x ” ,  x” ’ )  = 2 ( ~ ” ~  + x ” ’ ~ ) / [ ’ .  
The two parts of this region give equal contributions so the sum may be expressed in the 
form 

I2 = 2A (e, e )  I dx” I c E - x ”  m 

dx”’ I dx’ cos(2kx” sin e )  
0 0 (+x”+x” !  

W 

To order t2/ W2& the factor exp[-(x”2+x”’2)/ W2] may be set equal to unity and x ”  
and x”’ set equal to zero in the limits of integration. This leads to the result 
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As in the Fresnel limit, the remaining parts of the region of integration contribute terms 
of order l/d0 or less and these may be neglected if 4o >> 1. Thus, combining ( 4 3 ,  (4.7) 
and (4.2) we finally obtain for the scintillation index 

The spatial coherence function can be evaluated with the help of the same division of 
the volume of integration. Thus the contribution from region 1 of figure 11 is 

I1 = A(81, e,) Io‘ dx” /o‘-”‘dx”’ Io < - x “ - x ” ’  

dx’ cos(kx”U) cos(kx“’V) 

We evaluate this integral under the assumption [<< W. Setting W 2  = 0 in (4.9) and 
noting that kV[/do<< 1 over the physically interesting range of values of V for which 
decorrelation takes place (a point discussed further in 0 5 )  we obtain 

(4.10) 

Contributions from the two regions 2 are not equal but with a transformation of 
coordinates the total may be expressed in the form 

I 2  = A(BI,&) 6‘ dx” [o“’’ dx”’ / m 

dx’ cos(kx”U)[cos(kx”’V)+cos(kx’V)] ‘ +xf’+x’f? 

(4.11) 

This integral may be evaluated to the same order of approximation as (4.10) giving 

(4.12) 

Neglecting the contributions from the remaining parts of the region of integration which 
as before are down by a factor of at least l/do, adding (4.10) to (4.12) and normalising 
the result using (4.2) leads to the coherence function (kV[/dO<< 1) 

(4.13) 

Here \g(l)(&, &)I is defined by (4.3). Equation (4.13) reduces to S + 1 (equation (4.8)) 
when O1 = 6 ,  provided that [<< W ;  it is plotted in figure 12. 



1620 E Jakeman and J G Mc Whirter 
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Flgnre 12. Spatial coherence function of intensities for the values of .$/ W shown: truncated 
parabolic phase autocorrelation function, Fraunhofer limit, 4: = 100. The broken curve is 
a plot of the interference contribution obtained in the case of the truncated linear phase 
autocorrelation function (equation (4.22) of the text). 

4.2. Truncated linear correlation function (model (b) of § 2.2) 

As in case ( a )  (§ 2.2) the cut-off in p(r)may be neglected during the evaluation of (2.23). 
To order exp(-4;) we obtain 

At 8, = d2 = 8 this reduces to the angular distribution of intensity 

(4.15) 

The presence of the exponential factor in (4.14) implies that kV(/&<(/ W&<< 1 in 
the region where the function is not vanishingly small so that kU(/2&- k5 sin fl/q5; 
and to order (/ W& the normalised correlation function is therefore given by 

g(’)(e1, e2)=exp(-k2V2 W2/8). (4.16) 

In order to evaluate the scintillation index we refer again to figure 11. The contribution 
from region 1 is symmetrically disposed about the x‘-x”’ plane through the x n  axis and 
we need only double the result from one of these regions, say x ’ > x ” ‘ .  A further 
trisection of this volume is necessary before the integrals can be evaluated however, 
defined byx“<x”‘, x ’ > x ” ;  x ” > x ’ ” ,  x ’ > x ’ ’ ;  andx“>x’,  x ” > x ” ’ .  The total contribution 
from region 1 may thus be expressed in the form 

11 = 2A (e, e)( dx” Jx,, dx”’ 1,. dx‘ cos(2kx” sin 8) 
P - x ” - r “ ’  01 3 ( f - x ”)/ 2 

0 
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+ dx' cos(2kx" sin 8) 
('-x"')/2 11, 

dx"' i,,, dx" jx,, 
5 

(P-x"')/2 f-x $1,- 

+ lo'" dx"' Ix,,, dx' Ix, dx" cos(2kx" sin 0) 

1621 

x'2+Xrr2+X'f12 2 

xexp[-( w2 +q4x1'-2x ' ) ) ] ]  5 (4.17) 

where A (el, 0,) is defined as in (4.4) above. We shall evaluate the integrals in the limit 
(<< W, setting W' = 0 in the exponents and discarding terms of order exp(-&). The 
contribution of the last term in (4.17) is down by a factor l/+z on the first two and when 
this is neglected we obtain 

(4.18) 

Regions 2 give equal contributions but further subdivision of the volumes is necessary 
before the integrals can be evaluated. For example the region lying along the X I  axis 
must be considered in two parts according as x" is less than or greater than xi". The total 
contribution may be written 

1, = 2A (e, e)( 

I ,  = A (e, 0)5'/&[ 1 + ( k 5  sin e/4:)2]2. 

E/ 2 X 

dx" jX*-' dx"' 1 dx' cos(2kx" sin e)  
0 e + x  +* 

exp [ - i" l 2  + X'l2 w2 + x ' ' I 2  ~ 2"X"')] 
5 

+jot" dx"' jY'-' dx" Itm dx' cos(2kx" sin e) 
A X  t X  

xexp[ ~ j . ~ ~ - + x ~ ' 2 + x ' " 2  w2 +":")]]. 
5 

(4.19) 

The integrals can be evaluated in the limit 5 << W as before. Retaining up to first-order 
terms in ((/ W) we obtain 

(4.20) 

Adding (4.20) to (4.18) and normalising the result using (4.15) we note that the (5/W) 
term in (4.20) exactly cancels with the contribution (4.18) giving the Gaussian result 

S = l  (4.21) 

which may be contrasted with (4.8). 
Evaluation of the spatial coherence function proceeds in an exactly analogous way 

and, as might be expected, leads in the same order of approximation to the Gaussian 
factorisation property 

(4.22) 

where lg(')(Ol, & ) I  is given by (4.16). For comparison this function is plotted against V 
in figure 12. 

g(')(el, e2) = 1 + lg(')(e1, e2)12 
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4.3. Gaussian phase correlation function (model (c) of § 2.2) 

To order exp(-4;) the results for the field coherence function and mean intensity are 
identical with those for the parabolic phase correlation function given by equations 
(4.1)-(4.3). The scintillation index may be evaluated by an extension of the method 
used in the Fresnel limit. The major contribution to the integral (2.12) comes from the 
region where G(x’, x ” ,  x ” ’ )  is a minimum. The derivatives of this function, with respect 
to each variable, vanish for all x ‘  when x “  = XI”= 0 and for all x”‘  when x ”  = x ’  = 0. 
G(x’, x ” ,  x ” ’ )  in fact attains its minimum in three dimensions everywhere on the x ‘  and 
x”‘  axes. Taking advantage of the various symmetry properties of the integrand when 
el = e2 = 0 we obtain the reduced formula 

r m  r m  r x ’  

(I*@)) = 2A(e, e) J dx“ J dx’ J dx“’ cos(2kx” sin e) 

+ 4;G(x’, x ” ,  x ” ’ ) ) ]  

0 0 0 

(4.23) 

and we evaluate this integral by expanding G(x’, x”, XI”) about XI’ = x”’ = 0 (the major 
contribution coming from near the x ’  axis), i.e. 

,r,2 a2 

G(x’, x”, x”’)= G(x’, 0, O ) + y  i)x””G(~’, x”, x”‘) 
x ” = x ”’ 3 (1 

X’l2 a* 
2 axft2 , I f =  0 

+- -G(x’, XI’, x”’) 

(4.23) then becomes 

m 21 X ’  

( I 2 ( @ )  = 2A (8, e) I dx” I dx‘ 1 dx”‘ cos(2kx” sin e) 
0 0 0 

(4.24) 

(4.25) 

and integrating over x“ and x”‘ yields, to order t2/  W24i  
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This may be evaluated using the approximate model (3.25) employed in the Fresnel 
calculations of the last section. The main contribution to (4.26) in the region x ’ <  5/J3 
comes from near x ’  = 0 so we set x’  equal to zero in the denominator of the second factor 
in the integrand and also in the denominator of the exponent appearing in the same 
factor. Taking advantage of the inequality do W/( >> 1, (4.26) is given approximately by 
the equation 

(4.27) 

The first integral in (4.27) is evaluated by parts, taking advantage of the fact that 4o >> 1 .  
The result, to order exp(-4;) and (’/ W 2  is 

The second integral in (4.27) is just an error function: 

(4.28) 

(4.29) 

After normalisation using equation (4.2) the final result for the scintillation index is 
(retaining terms of order e/ W only) 

(4.30) 45 S=l- 

The corresponding spatial coherence function can also be evaluated analytically with 
the help of the approximate model (3.25). We first use the Taylor expansion (4.24) to 
reduce the general formula (2.24). After an integration over the XI’ coordinate and 
normalisation using (4.2) we obtain 

[cos(kVx’)+ cos(kVx”‘)] exp[-(x” + x””)/ W’] 
[[(2&/t2N1+ e-x’2/*2[1 - (2xf2/(2)]}p2 

X 

(4.31) 

Some numerically computed results based on this formula are shown in figure 13. 
Following the procedure used to evaluate (4.26), equation (4.3 1 )  can be expressed 
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Figure 13. Spatial coherence function of intensities for the values of [/ Wshown: Gaussian 
phase autocorrelation function, Fraunhofer limit, I& = 100, U = 0.  

approximately as the sum of two (double) integrals: 
t / J 3  X '  440 - (U2 k 2 t 2  + 2 V2)) / dx' io dx"'[cos(kVx')+ cos(kVx"')] 

g(2)(e1, e,) = - 
T W ~  exP(1642 0 

k2 t2V2  X '  

+- 840 e x p ( T )  dx' io dx"'[cos(kVx')+cos(kVx"')] 
(4.32) 

A little manipulation converts the first double integral into the form 
2 2  S I J 3  €/.13 I 1 = - e x p ( S ( U ' + 2 V 2 ) )  440  dx'cos(kVx') Io dx"'exp(- 

TWt 1640 0 

(4.33) 

The transformation x'" + x"'/x' followed by an integration by parts neglecting terms of 
order exp(-42) as usual, leads to the result 

(4.34) 

where, as before, El(x)  and Ci(y) are the exponential and cosine integrals respectively. 
The second double integral in (4.32) may also be evaluated to, order exp(-4:) and the 
result expressed in terms of complex error functions: 

1, = Re erfc( & + Fw) exp[ T( k2V2 e2 - W')] + erfc( A). 
(4.35) 

Formulae (4.34) and (4.35) reduce to the appropriately normalised form of (4.28) and 
(4.29) respectively if V =  0. In order to facilitate interpretation of these results we 



Scintillation behind a random phase screen 1625 

expand (4.35) in powers of [ / W  retaining only up to first-order terms in this small 
quantity. If we also set U = 0 for simplicity we have, finally, from (4.34) and (4.35) 

(4.36) 

is given by (4.3). Plots of (4.36) compare favourably with results where lg(l)(tll, 
obtained numerically from equation (4.31) when .$/ W is small. 

5. Discussion 

In the first part of this section we comment briefly on the general results obtained in Q 2. 
Most of the discussion is reserved for the deep phase screen limit analysed in O B  3 and 4, 
however. In the second part of the section we show how those terms in our formulae 
connected with the presence of speckle in the scattered intensity pattern and those 
connected with other scintillation effects such as focusing may be identified and 
distinguished. This enables the mathematical origin of the phenomena to be estab- 
lished and facilitates a more detailed discussion of the theoretical predictions in the last 
part of the section. 

5.1. General results 

The most widely accepted result given in Q 2 appears to be equation (2.11) which implies 
that the field coherence function is the same at all planes in the Fresnel region (2.5). 
This relation was first established and discussed by Booker et a1 (1950) and we shall find 
later that as a consequence, in the Fresnel limit the coherence length characterising that 
component of the intensity pattern which arises from interference effects (i.e. the 
speckle) is independent of distance from the screen. 

The general asymptotic formulae (2.18)-(2.22) for the intensity statistics, which 
hold far from the screen in the Fresnel limit, have not been given before, although 
Mercier (1962) derived a special case of these results assuming joint Gaussian statistics 
for the phase function. Our treatment of the problem, whilst not mathematically 
rigorous, is plausible and gives physically reasonable results. The basic premise leading 
to these formulae is that the real and imaginary parts of the complex amplitude far from 
the screen constitute a circular complex Gaussian process. This property in turn follows 
if : ( a )  the memory condition (2.14) is satisfied so that far from the screen the scattered 
field is composed of many independent contributions and the central limit theorem can 
be applied; and ( b )  the Fresnel condition (2.5) is satisfied so that the systematic phase 
factor in the vector addition of the independent contributions distributes the noise in 
the resultant amplitude in a uniform fashion, i.e. the variances of the real and imaginary 
parts of this complex amplitude are equal. We emphasise again here that unmodified 
power law structure functions do not satisfy (2.14) and their use in phase screen 
calculations could give incorrect statistical properties unless do >> 1 when, as pointed out 
below, the calculations may become insensitive to the tail of the phase autocorrelation 
function. Fried (1976) has recently suggested that the scattered intensity should be 
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Rice distributed even in the Fraunhofer limit (2.6). However, specific counter examples 
can be found to this prediction (e.g. Goodman 1975) and in general it may be asserted 
that in the limit (2 .6 )  the scattered field should constitute a circular complex Gaussian 
process only when the phase shifts introduced by the screen are large (i.e. #o >> 1) and 
the illuminated area contains many phase correlation lengths. The mean amplitude is 
then zero, the scattered intensity negative exponentially distributed and the first- and 
second-order coherence functions are related by the characteristic factorisation prop- 
erty (2.28). Optical frequency radiation with these properties is usually referred to as 
‘Gaussian light’ and the associated intensity pittern is sometimes described as ‘fully 
developed speckle’. In the discussion of the deep phase screen limit which follows we 
shall use the terms ‘Gaussian statistics’ or ‘Gaussian limit’ as abbreviated references to 
this situation. 

5.2. Deep phase screen limit: qualitative features 

Interpretation of the results presented in §§ 3 and 4 is facilitated by comparison with the 
simple discrete scatterer model described in our previous papers (Jakeman 1974, 
Jakeman and Pusey 1975,1976, Jakeman eta1 1976). In this model we assume that the 
scattered field is composed of N randomly phased contributions with amplitudes ai 
which are statistically identical, independent from each other and from the phases d j :  

N 

j-1 
SA@, t )  = 2 ai(r)  exp(i#Ji(r)) exp(iwt). (5.1) 

The scintillation index and second-order spatial coherence function may be written 

where 

The terms containing N in (5.2) and (5 .3)  quantify the deviation from Gaussian field 
statistics for this simple model when the number of scatterers is finite. In  the limit N +  00 

the scintillation index approaches unity and from equation (5 .3)  we recover the 
factorisation theorem characteristic of a zero-mean circular complex Gaussian process. 
The ‘Gaussian’ or interference term lg‘’)(r, r’)I2, associated with speckle in the scattered 
intensity pattern is clearly identifiable in (5 .3)  even when N is finite; however, its 
magnitude is reduced and there is in addition a ‘single-scatterer’ or ‘non-Gaussian’ term 
dependent on the properties of the individual scatterers. This latter term will be present 
even in incoherent scattering situations when intensities rather than fields are additive 
and when no interference effects are present. Even when speckle is present this 
non-Gaussian term may represent the dominant fluctuation in the intensity pattern if N 
is small and the cross section fluctuations of a single scatterer are sufficiently large. 

We now seek the structure of equations (5.2) and (5 .3)  in the analytical results of 
§§ 3 and 4 in the hope of identifying terms associated with speckle and terms connected 
with other scintillation effects. Examining first the Fraunhofer results ( Q  4) we see that 
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the spatial coherence functions for the truncated parabolic and Gaussian models 
(equations (4.13) and (4.36), respectively) are precisely of the form (5.3) if we set 
N - W / t  corresponding to independent scattering elements of length 6 at the screen. 
Thus in each formula we recognise first the speckle term Ig(’)(O,, &)/’followed by a 1/N 
correction term (which is a little more complicated than in (5.3)) and finally a 
single-scatterer term. The corresponding scintillation indices (equations (4.8) and 
(4.30)) reduce to the form (5.2) when the error functions are expanded to first order in 
f /  W. Note, however, that to the order of approximation in which these results are valid 
no deviation from Gaussian statistics is predicted for the truncated linear phase 
autocorrelation function model. 

In the Fresnel limit the situation is complicated by the presence of focusing and 
other effects near the screen. However, we have seen in a previous paper (Jakeman and 
McWhirter 1976) that these phenomena may themselves be interpreted as ‘single- 
scatterer’ effects which arise because the effective area contributing to the scattered 
field is reduced near to the screen. It is evident from the Fraunhofer case that formulae 
in which only the first-order deviation from Gaussian statistics is retained most closely 
resemble (5.2) and (5.3). Since in the Fresnel region the scintillation index saturates to 
the Gaussian value of unity at large distances from the screen for all model phase 
correlation functions when 4o >> 1, we examine the departure from Gaussian statistics to 
first order in the reciprocal of this length. We see immediately that the asymptotic 
formula (3.37), derived for the spatial coherence function in the case of the Gaussian 
model phase autocorrelation functions is of the form (5.3) if we set N - q-’. Indeed this 
formula is very similar to the result obtained in the Fraunhofer limit (equation (4.36)) 
and its terms can be interpreted in precisely the same way. In the case of the parabolic 
phase autocorrelation function the right-hand side of (3.10) must be expanded to first 
order in l / r  (but retaining all terms involving x without approximation). The result 
obtained is 

( 5 . 5 )  
This is almost identical with the Fraunhofer result if we replace (k t ’ / z&)  with 25/ W 
and x/z with V, and is clearly of the form (5.3) with N -  ~ 4 ~ ( 2 . r r ) ” ~ / k 5 ~  -q-’ as in the 
case of the Gaussian model. For both model phase autocorrelation functions this latter 
identification is consistent with the notion of an effective area of the screen contributing 
to the scattered field in the Fresnel limit. Thus the speckle size 6/40 (equations (3.2) or 
(3.21)) corresponds to an effective aperture z d O / k t  at the screen, and if we assume that 
each scatterer occupies a length 6 as above then the total number of independent 
scatterers which can contribute to the field at a distance z from the screen will be 
Z&/kt’ - q-’ .  

A similar expansion of the Fresnel results in the case of the truncated linear phase 
correlation function leads to qualitative different formulae. Thus, for large z,  the spatial 
coherence function (3.19) is given approximately by 

This is somewhat similar to (5.3) if we set N - r z & / k t 2 :  the speckle term in particular 
is present in the expected form. However, unlike (5.5) an additive non-Gaussian term is 
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not in evidence suggesting that fluctuations in the cross section of an individual scatterer 
perhaps give a contribution which is smaller than the correction to the Gaussian 
term. The corresponding scintillation index is in fact less than unity for all do >> 1 and t 
(figure 7). Further, the speckle size [/q5; (equation (3.11)) indicates an effective 
aperture at the screen of order zc$;/k[ so that to obtain the above value for N we 
require the independent scattering elements to be of length [/di, i.e. equal to the 
coherence length of the field at the screen rather than the coherence length of the phase 
fluctuations. This would explain the results obtained in the Fraunhofer limit showing no 
deviation from Gaussian statistics since we would have N-' - Wdg in this region and 
such terms were specifically neglected in the calculations. 

We have demonstrated above that in the Fraunhofer limit (2.6) and far from the 
screen in the Fresnel limit (2.5), a simple discrete scatterer model enables us to 
recognise interference (or speckle) terms and, at least for the truncated parabolic and 
Gaussian model phase autocorrelation functions, single-scatterer terms in our results. 
Closer examination of the analysis presented in $0 3 and 4 and in the appendices reveals 
that the interference contributions including the 1 / N  correction terms always derive 
from regions 2 of figures 3 and 1 1  whilst the non-Gaussian or single-scatterer terms 
always originate from region 1 of these figures. This is entirely analogous to the way in 
which terms in the multiple summation leading to equation (5.3) separate, and allows us 
to identify these two types of contribution in the more complicated formulae which 
apply close to the screen in the Fresnel limit. This in turn facilitates the more detailed 
interpretation of results described below. 

5.3. Deep phase screen limit; detailed interpretation of results 

5.3.1. Truncated parabolic phase autocorrelation function. Inspection of the 
Fraunhofer results (4.8) and (4.13) shows that this function generates a one- 
dimensional analogue of the facet model discussed at length in previous publications 
(Jakeman 1974, Jakeman and Pusey 1975). The independent scatterers in this model 
are flat facets of equal size 6 and Gaussian slope distribution. The number of potential 
scatterers in the Fraunhofer limit is thus W / r  as indicated in the earlier discussion but 
the single-scatterer terms in (4.8) and (4.13) are enhanced by cross section fluctua- 
tions due to the distribution of slopes present in the illuminated region. The enhance- 
ment factor is inversely proportional to the probability of finding a facet whose 
diffraction lobe falls on the receiver; it is therefore proportional to the RMS phase shift 
q50 and increases in a Gaussian fashion with angle (equation (4.8)). This may be 
contrasted with the angle dependence of the mean intensity (4.2) which is directly 
proportional to the probability of finding a facet facing the receiver. These effects are 
discussed at greater length in e.g. Jakeman and Pusey (1975). Note that the correction 
to the interference term in equation (4.8) can usually be neglected by comparison with 
the single-scatterer term if [/ W s 1 and do is large. 

The spatial coherence function (4.13) is characterised by two angular sizes w1 and 
w 2 .  One is the speckle size present in the interference term Ig")(&, & ) I 2 ,  and this is 
related to the size of the illuminated region in the usual way according to equation (4.3): 
w1 - (kW)-' .  The other, present in the single-particle term, is clearly related to the far 
field diffraction pattern of a single facet. This term decays in inverse proportion to the 
square of the angular separation of the receiver, V, and exhibits an oscillatory structure 
of angular period w 2  - ( k 0 - I .  The correction to the Gaussian term dependent on Vcan 
be neglected if 40 >> 1.  Since (4.13) is only valid when [<< W we have w 2  >> w1 so that the 
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speckle and non-Gaussian contributions are clearly distinguishable in plots of this 
function (figure 12). One further point which must be mentioned here is that (4.13) was 
derived under the assumption k Vgld0 << 1 because both Gaussian and non-Gaussian 
contributions to the spatial coherence function decorrelate (i.e. decay to zero) before 
k Vg140 is significant if 4o >> 1. 

In the Fresnel limit we might expect the effective area contributing to the scattered 
field to be determined by the slope distribution of the facets which will limit the number 
of these scatterers giving ‘specular’ contributions to a given receiving point. The RMS 
tilt of a facet is of order &/k( so that the length of the screen which can contribute at a 
point z will be z40/k( .  This implies a speckle size (/do and number of potential 
scatterers z40 /k (2  confirming our interpretation of (5.5) and in agreement with 
equations (3.2) and (3.10). The principal peak in the scintillation index (3.6) plotted in 
figure 4 occurs at the diffraction maximum of a single facet, i.e. z / k t 2  - 1. The number 
of potential scatterers (-40) is large in this region but the non-Gaussian term in (3.6) 
containing Fresnel integrals is enhanced because only a few of the facets give a specular 
contribution to the scattered field, i.e. there are cross section fluctuations. As in the 
Fraunhofer limit the enhancement factor is proportional to 40 so that the RMS phase 
shift cancels from the single-scatterer term. The non-Gaussian term is thus important 
near the diffraction maximum plane z - k t 2  but its magnitude is limited by the large 
number of potential scatterers and, in contrast to the Fraunhofer limit, it does not 
increase in proportion to c.$~. Note that in the region z40/k5’- 1, where the number of 
contributing scatters is small, the scintillation index is considerably reduced. This is 
because although fewer facets contribute to the field in this region, the contrast in the 
diffraction pattern from an individual scatterer is less so that the enhancement factor 
due to cross section fluctuations is also reduced. Although the formula (3.6) approaches 
the correct limiting value as z + 0 it may assume incorrect values when kt2/z4g is not 
small since terms of this order have been neglected in the calculations (appendix 1). 
Portions of the scintillation curves near to the screen have been omitted from figure 4 
for this reason. 

As in the Fraunhofer limit, more than one characteristic length is present in the 
spatial coherence function, equation (3.10) in the Fresnel limit. The two principal 
scales are most easily discerned in the asymptotic result (5.5) where only the far field 
diffraction pattern of a single facet is involved in the non-Gaussian term. We have 
already discussed the speckle size, 5/40, associated with the /g‘’)(z, * ) I 2  interference 
term in (3.10). The non-Gaussian or single-scatterer term involving Fresnel integrals 
falls off more slowly like 1/,y2, as in the Fraunhofer limit, and shows a complicated 
periodic structure involving the length scales z /k5  and ( z /k)1’2  which feature in the 
Fresnel diffraction pattern of a single facet. Both interference and non-Gaussian 
contributions are visible in figure 5. Close to the screen, when on average less than one 
facet contributes to the scattered field ( z40 /k {2<  l), another length present in the error 
function corrections to the interference term in (3.10) must be taken into account, i.e. 
rcPo/k& This characterises the limitation placed by geometrical optics on the length in 
the receiving plane over which rays can arrive from two adjacent facets and thus 
produce interference effects. It is much greater than the speckle size in the range of 
validity of our formulae, however, since their derivation is based on the assumption 
k(2/z&<c 1. 

5.3.2. Truncated linear phase autocorrelation function. One physical interpretation of 
this model might be that the scattered wavefront emerging from the screen is of the form 
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of a histogram with equal intervals of length 5 and Gaussian random height distribu- 
tion. This is a facet model in which the facets are all oriented parallel to the incident 
wavefront. Leaving aside the question of the validity of the Huygens-Fresnel approxi- 
mation for such a model (which is a problem in the case of all phase autocorrelation 
functions with non-vanishing first derivatives at the origin), we see that in the 
Fraunhofer limit (2.6) the non-Gaussian term and the correction to the interference 
term will be of comparable size since the cross section of every scatterer (facet) is 
identical. According to equations (4.18) and (4.20) these two terms in fact cancel 
identically to zero. Far from the screeo, in the Fresnel limit, such that k t2 / z4 :<<  
kt2/.z4:<< 1 we note that the integrals (3.12) and (3.13) for the non-Gaussian and 
interference contributions to the second intensity moment reduce to 

(5.7) 

As we have mentioned earlier the speckle size (equation (3.11)) implies an effective 
aperture at the screen of z4g /k t .  The terms proportional to z-’ in (5.7) are thus of 
order N-’ according to the facet model and are analogous to terms of order t/ W in the 
Fraunhofer limit. As in the Fraunhofer region they cancel identically to zero when II is 
added to 12(S = I ,  + I 2  - 1). According to the discrete scatterer model (5.2) such 
cancellation would be expected if the complex amplitude from each facet was itself 
Gaussian distributed so that a 2  obeyed a negative exponential distribution. 
Interpretation of the quantity ( /4:  as the characteristic length of independent ele- 
ments of the wavefront emerging from the screen would appear to be consistent with the 
above observations and also with the predicted ‘higher-order’ deviation from Gaussian 
statistics discussed in § 5.2. It also gives the appropriate length scale for the non- 
Gaussian contribution to the spatial coherence function manifest in equation (5.6) and 
is not inconsistent with the angular distribution of intensity (4.15) if this is interpreted as 
being governed by the diffraction lobe width of the individual scattering elements. 
However, the physical basis for the above explanation is rather obscure. 

One interesting feature of the results (3.16) and (3.19) and (3.20) which are valid 
when 4o >> 1 is that they represent an exact solution of the scattering problem for the 
case of an unmodified linear law structure function, i.e. in the absence of the cut-off in 
equation (2.30). The two-dimensional analogue of this problem has been investigated 
by Marians (1975) using numerical techniques. The spatial coherence function plotted 
in figure 7 is indeed very similar in form to the result calculated by Marians and the two 
length scales present in equation (5.6) above are clearly visible. The spectrum of 
intensity fluctuations (figure 8) shows the same rather unrevealing structure obtained by 
Marians except at low frequencies where our result appears to fall off rather more 
smoothly with decreasing frequency. Note that the scintillation index (3.16) (figure 6) 
increases monotonically from zero at the screen to unity when k [ / z &  >> 1 (which may 
still be very close to the screen) and exhibits no non-Gaussian peak such as would be 
produced by focusing effects. 

It must be emphasised that the analogy between our results and those of Marians can 
only be drawn when 40 >> 1. In weak scattering situations the effect of truncation is 
significant, contrary to the claims made by Rumsey (1975). Thus the scintillation index 
for an unmodified linear power law structure function always saturates at unity at 
sufficiently large distances from the screen whatever the value of 40. On the other hand, 
for the truncated autocorrelation function (2.30) it is not difficult to show that in the 
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limit of large z the contributions to the scintillation index from regions 1,3,4,5 and 7 of 
figure 3 vanish for all do whilst Z2+ 2 and Z6+ -exp(-2&) so that 

lim s = 1 - exp(-24;). (5 .8 )  
z +13 

This result is identical with that obtained for the Gaussian phase autocorrelation 
function model and is in agreement with the more generally valid formulae presented in 
§ 2 (see e.g. equation (2.22)). These predict that far from the screen the scintillation 
index should saturate at a value lying between zero and unity depending on the strength 
of the scattering process, i.e. on the distribution of the phase function at the screen. 
Experimental evidence in support of this prediction has been obtained recently by Fujii 
and Asakura (1977). Only when do >> 1 is the value of unity attained as in the 
unmodified linear power law case discussed by Marians (1975) and Rumsey (1975). We 
have therefore verified, for one type of phase autocorrelation function, our conjecture 
that models not satisfying the physically reasonable memory condition (2.14) can lead 
to unphysical results in weak scattering situations. This increases doubt as to the 
wisdom of using such models in phase screen calculations and suggests that the 
implications of their use in theories of propagation through inhomogeneous media 
should also be carefully examined. 

As a final comment on earlier investigations of the linear power law structure 
function we would like to point out that Rumsey’s conclusion that ‘the high frequency 
approximation to the intensity spectrum is the angular spectrum that would result from 
twice the strength of turbulence’ is a direct consequence of the presence of the familiar 
Gaussian or speckle term Ig(”(z, * ) I 2  in expressions for the spatial coherence function 
and simply reflects the fact that interference is taking place in the scattered radiation. 

Finally we note that in the deep phase screen limit results identical to (3.16), (3.19) 
and (3.20) will be obtained for any one-dimensional phase autocorrelation function 
with non-vanishing first derivative at the origin such as exp(-ixi/[). This is because in 
calculations of the Fresnel type (9 3), for example, the principle contributions to the 
integrals again come from regions near the axes in figure 3 (#o >> 1) where Taylor 
expansions of the phase correlation functions in F(x, x’) (equation (2.10)) may be used. 
In contrast to the case of the Gaussian model phase autocorrelation function however, 
when the first derivative of p ( x )  at the origin is non-zero the leading terms in these 
expansions involve only one coordinate. Near the z axis for example, we have 

which immediately gives a formula identical to (3.15) for the scintillation index when we 
set 5 = (-dp(x)/dx);lo. 

5.3.3. Gaussian phase autocorrelation function. The results obtained using this func- 
tion can again be interpreted in terms of a model in which the wavefront emerging from 
the screen is assumed to be composed of a number of independent elements of length [. 
Only those elements containing points which are specular with respect to the receiving 
direction give significant contributions to the detected intensity so that the effective 
number of scattering centres is reduced by a factor depending on the slope distribution 
of the emergent wavefront, as in the case of truncated parabolic phase autocorrelation 
function. This slope distribution is in fact the same for both models, depending only on 
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the second derivative of the phase autocorrelation function at the origin, and conse- 
quently statistical properties which it governs such as the mean intensity, first-order 
coherence function, speckle contribution to the scintillation index and its angle depen- 
dence, are also the same for both models. The intensity pattern associated with a single 
scattering centre is not the same for the two models, however, as comparison of the final 
terms in the Fraunhofer results (4.8) and (4.30) for the scintillation index readily 
reveals, The far field intensity pattern due to a flat facet is just a simple diffraction lobe 
whose width is inversely proportional to the facet size. On the other hand a smoothly 
varying wavefront will produce diffraction broadened caustics in the far field (do >> 1) 
whose detailed shape is governed by geometrical optics considerations as well as by 
diffraction (M V Berry, private communication). The characteristic width of such 
features depends on the distribution of curvature along the emergent wavefront (which 
is associated with the fourth derivative of the phase autocorrelation function at the 
origin) and, for the Gaussian model (2.31), is considerably greater than that of the 
diffraction lobe associated with a flat facet of length 6 when &>> 1. The cross section 
fluctuations of the scattering centres are, as a consequence, proportionally less. Thus, in 
the Fraunhofer limit, instead of the & factor of enhancement present in equation (4.8) 
for the scintillation index based on the truncated parabolic phase correlation function, 
we find a factor of only In do in the corresponding result (4.30) based on the Gaussian 
phase autocorrelation function. 

In the Fresnel limit, qualitative differences between the results obtained using the 
two models arise in the same way. The largest fluctuations in the cross section of a single 
scatterer in the Gaussian phase autocorrelation function case occur near the geometri- 
cal optics focus z = k&*/& as opposed to the diffraction maximum z = k t 2  which only 
has significance in this context if the scatterers are flat facets. Thus the scintillation 
index based on the Gaussian model exhibits a peak near q = 1 (figure 9). Moreover, 
since the number of scatterers N-q- '  is of order unity at the peak, the full non- 
Gaussian enhancement factor proportional to In &, is retained. This may be contrasted 
with the parabolic case where the large number of scatterers in the region of the 
diffraction maximum serves to cancel the 4o enhancement in this factor. The height of 
the focusing peak in figure 9 is therefore proportional to In do (contrast with figure 4). 
This result has been obtained by many authors using a variety of approximations 
(Salpeter 1967, Buckley 1971, Shishov 1971, Taylor and Infosino 1975). Buckley, in 
particular, obtained a formula for the scintillation index very similar to (3.34). His 
result is expressed in terms of length scales associated with the coefficients of the second 
and third terms of the Taylor expansion (2.32) of an arbitrary even powered phase 
correlation function. Inspection of our analysis reveals that the results do indeed 
depend on only the second and fourth derivatives of the Gaussian phase autocorrelation 
function. The exponent appearing in the integral on the right-hand side of equation 
(3.24) could be expressed more generally as - ~ ~ x ' z ( ( p ' f ( x ) - p " ( 0 ) )  for example and the 
modelling (3.25) would then take the form ( p " =  d*p/dx2, p i v =  d4p/dx4) 

(5.10) 

where Lz  = ( -~"(0))-" ' ,  L4 = @iv(0))-i'4. The analysis subsequent to this step is 
identical to that described in § 3.3 and leads to the result 

2 4  

S = 1 - 2 erf(q)+- 4 exp(-ij2)[ l n ( w )  + T erfi(q)- R ( q ) ]  (5.1 1) 
7T L2 
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where Q = kL:/z&J2. This formula contains terms which are similar to, though not 
identical with contributions to S from various frequency ranges calculated by Buckley 
(1971). The coefficient of the term In cb0 in particular is identical to that found by 
Buckley (1971) and Shishov (1971). Equation (5.11) reduces to (3.34) if we set 
p " ( 0 )  = -25-' and p"(0) = 125-4 appropriate to the Gaussian phase autocorrelation 
function. 

We should like to point out that the curve corresponding to r $ g  = 8 in figure 9 which 
we have computed from the intermediate approximation (3.24) is indistinguishable 
from that obtained by Whale (1973) who calculated the result directly from equation 
(2.9). Since formula (3.24) becomes more accurate as C#I~ increases the remaining curves 
in figure 9 can be regarded as essentially exact solutions of the problem. Comparison of 
the numerically computed curves with the analytical result (3.34) (plotted as broken 
curves in figure 9) shows that this formula is a good approximation for large values of 40 
as expected. The largest error occurs at the peak and decreases from a little more than 
15% at 4; = 8 to less than 4% when 4; = lo4. 

Plots of the spatial coherence function of the intensity for the Gaussian phase 
autocorrelation function model do not seem to have been given previously although a 
number of authors (e.g. Bramley and Young 1967, Buckley 1971) have quoted values 
for the half-width or characteristic length to the l / e  point. It is clear from figures 10 and 
13 that this is not particularly useful information because several length scales are 
involved in the decay of this quantity. These can be identified most easily in the 
analytical behaviour far from the screen in the Fresnel limit (equation (3.37)). The 
smallest scale present in this result is the speckle size [ /bo associated as usual with the 
Ig(')(z, * ) I 2  interference term. Unlike the parabolic case ?WO further characteristic 
lengths are in evidence. The origin of these can be understood from the structure of the 
non-Gaussian final term (containing Ci and E l )  which is larger than the correction to the 
interference term when do >> 1. The argument of the exponential integral is indepen- 
dent of wavelength if we set c # ~ ~  - kh, for a surface scattering configuration in which ha is 
the RMS surface height fluctuation. We may therefore associate this term with the 
distribution of intensity near a caustic predicted by geometrical optics. The corres- 
ponding length scale of the order of zqh/k( is the longest one present in equation 
(3.37). On the other hand, the cosine integral is clearly a diffraction term and 
presumably, describes the diffraction broadening of the otherwise singular behaviour of 
the intensity at a caustic. This term decays inversely as its argument and in an oscillatory 
fashion with period of the order of z / k &  This period is down by a factor q ! ~ ~  on the length 
scale associated with the geometrical optics term (El) and, being of order (/q40 it is 
greater than the speckle size when z lies beyond the focusing region. 

The speckle and single-scatterer contributions are clearly visible in figure 10, but the 
two longer characteristic lengths cannot easily be distinguished over the range of 
detector separations for which the graphs are plotted. The analytical result (3.37) is in 
good agreement with the numerically computed curves even for values of q relatively 
close to the peak in the scintillation curve. According to the more exact result presented 
in the appendix (equations (A.37) and (A.38)) no drastic change in the behaviour of the 
spatial coherence function is to be expected in this region but the magnitude of the 
interference contribution to the statistics begins to decrease markedly. In fact the 
speckle size (/& and the period of the cosine inrcgral in (3.37) are comparable in the 
focusing region so that the contributions of interference and diffraction cannot be easily 
distinguished. The characteristic length associated with the geometrical optics term, on 
the other hand, is still much larger, being of order 5. Note that the dip below unity 
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exhibited by several of the curves in figure 10 reflects the fact that for certain receiver 
separations close to the screen only one scattering centre may be in the field of view of 
both receivers. If the ‘spike’ of radiation from this scatterer falls on one receiver then it 
cannot fall on the other so that the intensity cross-correlation coefficient will be small. 
As the separation of the receivers is increased further, there will come a point when 
each will ‘see’ a different independent scattering centre giving a cross-correlation 
coefficient of unity in agreement with the asymptotic behaviour €or large ,y predicted by 
the analytical results (3.37), (A.38) and (A.39) and with the numerically computed 
curves. 

The form of the spatial coherence function (4.36) in the Fraunhofer limit is 
completely analogous to the Fresnel result (3.37) valid far from the screen and does not 
warrant further discussion. Thus as a final comment we merely note that all the 
formulae obtained in the case of the Gaussian phase autocorrelation function may be 
generalised along the lines indicated prior to equation (5.11) above provided the length 
scales L4 and LZ are not too dissimilar (for a discussion of this last point see Buckley 
197 1). 

6. Summary and conclusions 

We have evaluated the first- and second-order statistical properties of the intensity of 
radiation scattered by a deep Gaussian random phase screen for three types of phase 
autocorrelation function and have identified, with the help of a discrete scatterer model, 
those terms in our formulae which arise due to interference and are associated with 
speckle in the intensity pattern, and those terms which arise from single-scatterer aff ects 
and are associated with non-Gaussian variations in intensity. We have shown that a 
simple physical interpretation of the scattering process is possible when the phase 
autocorrelation function is of truncated parabolic or Gaussian form. 

In the first (truncated parabolic) case the wavefront emerging from the screen can be 
thought of as being composed of equal sized facets with Gaussian slope distribution. In 
the Fresnel limit the scintillation index has a peak near the diffraction maximum of a 
single facet. The maximum height of this peak is independent of wavelength being 
limited by the fact that a large number of elementary scatterers actually contribute to 
the intensity in its neighbourhood. When the number of scatterers is restricted by the 
width of the illuminating beam as in the Fraunhofer region, however, large deviations 
from Gaussian statistics arise because of the sharpness of the spikes of intensity received 
from individual facets. These non-Gaussian fluctuations increase as the spikes sharpen 
up with a decrease in wavelength. In addition to the speckle size, the spatial coherence 
function is characterised by the width of the diffraction lobe from a single facet. 

In the second (Gaussian) case the wavefront emerging from the screen can also be 
decomposed into a number of independent scattering elements which contribute to the 
detected intensity only if they contain specular points with respect to the receiving 
direction. In the Fresnel region these produce a peak in the scintillation index near the 
geometrical optics focusing plane of the wavefront. On average, only one scatterer 
contributes to the intensity in this region so that deviation from Gaussian statistics is 
larger than in the parabolic case and increases when the pattern associated with an 
individual scatterer is sharpened by a decrease of wavelength. 

A similar wavelength dependence of non-Gaussian fluctuations is found in the 
Fraunhofer limit. For a given number of scatterers the size of the deviation in this limit 
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is considerably smaller than in the case of the truncated parabolic phase autocorrelation 
function, however, because the far field intensity pattern associated with a single 
scatterer is not a simple sharp diffraction lobe but a diffraction broadened caustic with a 
long ‘geometrical optics’ tail. In addition to the speckle size, the spatial coherence 
function is characterised both by a length associated with this tail and a length 
associated with diffraction broadening. 

The analytical formulae we have derived for these two model phase autocorrelation 
functions (i.e. truncated parabolic and Gaussian) are supported by a large number of 
numerically computed results. Our original contributions here include plots of the 
scintillation index for very large mean square phase shifts, and plots of the associated 
spatial coherence functions of the intensity. Although our models are one dimensional 
the shape of the latter functions should not be qualitatively different in the two- 
dimensional case and one conclusion that cannot be avoided here is that a coherence 
length defined by decay to the l / e  point on these curves, as quoted by previous authors 
(e.g. Bramley and Young 1967, Buckley 1971), is not a useful characteristic because of 
the multiple length scales present. 

Although interference terms can be identified in our results for the truncated linear 
phase autocorrelation function, it is difficult to formulate a simple physical picture of the 
scattering process which satisfactorily explains the form of deviations from Gaussian 
statistics in this case. No peak is predicted in the scintillation index for this model and 
non-Gaussian fluctuations in both Fresnel and Fraunhofer limits seem to be higher- 
order effects than those predicted using the other two models. One problem with this 
phase autocorrelation function is the implied discontinuities in the scattered wavefront 
associated with the non-vanishing first derivative at the origin. As we have emphasised 
throughout the calculations, the results obtained in the deep phase screen limit depend 
crucially on the behaviour of the phase autocorrelation function near the origin, so that 
the use of models with an unphysical behaviour in this region such as those involving 
odd or fractional power law dependencies must be suspect. It is true that discontinuities 
in the slope of the scattered wavefront are implicit in calculations using the truncated 
parabolic correlation function and associated facet model, but the simple physical 
interpretation of our results which is possible in this case is re-assuring and suggests that 
this model may be useful in scattering from some types of rigid rough surfaces (e.g. 
geological and man-made structures, crystallites etc). The Gaussian or more general 
even-powered phase correlation function (equation (2.32)) would seem to be more 
appropriate in the case of strong scattering by continuous media, however. 

Finally, we have shown in this paper that unphysical statistical properties may be 
predicted by calculations involving phase autocorrelation functions which do not 
‘forget’ or decay to zero with increasing spatial separations. We have demonstrated this 
point explicitly by showing that the truncated linear correlation function-which 
satisfies this criterion-gives results which differ significantly from those obtained using 
an unmodified form (i.e. with no cut-off) in the case of small RMS phase shifts. Thus one 
is led to doubt the wisdom of using unmodified odd or fractional power law structure 
functions (which are unphysical at the origin and at large spatial separations) in both 
very strong and very weak phase screen scattering configurations. 
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Appendix 1 

In this appendix we establish the order of magnitude of the approximations used in 
8 3.1. First we examine the integral (3.4) which may be written 

2 o'dx' 2 4 ; ~ ' ~  2 *dx'  24;Xl2 
sin(Yx1) exp( -7) I2 = 2 -- T o  j 7 sin(:*') e x p j - 7 )  + - T E  I --I 2k ' dx ' IE  * ' + E  dx cos(:xx') exp( -F). 24;xt2 

IT2 0 

We have 

and also 

For large values of 4o (A.2) is of order exp(-2&)/& and is negligible whilst (A.3) is 
small except in a small region close to the screen. We shall not consider this region in 
the case of the parabolic correlation function since it does not contain features of 
physical interest in the present context. Provided that 40>> 1 and kt2/.z9i<< 1, (A . l )  
may therefore be written 

We now consider the contributions to the scintillation index of regions 3-7 of figure 3 in 
order. In region 3 x + x' > 6, Ix - x'/ < 6, x < 6, x' < 6 so that the contribution from this 
region is 

The transformation x + -x + 6, x' + -x' + 6 converts the region of integration into the 
area 1 of figure 3. The simple rotation a = x +x ' ,  b = x - X I  then transforms (A.5) into 
the form 

- 26)2)]. (A.6) Io da  1-r db cos[ ;( 2 - 6) ( a-6 2 - 6) ] exp[ 6 :( 1 - 6z 
k '  k a + b  

13 = 
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The integral over b can be performed exactly to give 

and the transformation a + -a + 5 leads to 

Clearly 

so that the contribution from region 3 of figure 3 may be neglected except in a small 
region very close to the screen which has already been excluded from our calculations. 

The contributions from regions 4 of figure 3 are equal and we consider only the 
shaded area below x = x’ where x > 6, x’ < 6, /x - x ’ I  < 5, x + x‘ > 6 so that 

2k 26 6 (,“ ,) [ ’( x‘*-x*+2x*’)] 
t2 14 =- 1 dx jx-, dx’ cos -xx exp - $ J ~  1 + 

rrz 5 
(A.lO) 

It is difficult to proceed with this integral without approximation so we merely note that 
e 2k 

=z e 
1141 s - 5 2c dx jx-, dx’ exp[ -&( 1 + 

k6 
= 7. 240 I 5 dx exp[ --&( 1 - $)I [ erfc($(2x - 6 ) )  - erfc(&(x 6 +())I 

(A. 11) 

It is not difficult to show that the second integral in this expression is of order 
exp(-24;). The first term is highly peaked about x = 6 if  4 >> 1 and integration gives 

so that this contribution is also negligible except in the small region close to the screen 
which we have excluded from our calculations. 
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The contribution from region 5 of figure 3 is obtained by observing that in this region 
x>cf ,x’>[ ,x+x’>[ ,  ix-x’I<[: 

2k ” 

=z ‘ dx’cos (t -xx’ ) exp [ --& ’( 3 -7 (*-”)’)]. Is  = - 1 dx le3‘-‘ (A.13) 
6 

Since Ix -x’1< 6 over the region of integration the exponential factor is everywhere less 
than exp(-24:) and I5 may therefore be neglected when do >> 1. 

In region 6 o f  figure 3, x > ( ,  x ‘ > &  ix-x’l>& a n d x + x ’ > ( s o  that 

This integral may also be written 

2k 
dx’ {e’’-‘ dx c o s ( j ~ ) .  kxx’ I~ = - exp(-24;) 

irz 

Adding (A. 14) and (A. 15) yields, with a little manipulation 

16=-exp(-24;) k 
7 [ 5; lox$ cos ( k ~ ‘ ~ )  - sin . (k:‘) - 

irz 

+ lo‘ dx’ lox’+‘ dx cos(,?) - lo’* dx‘ {:‘-*cos( y)] . 

(A.14) 

(A. 15) 

(A. 16) 

The first integral in (A.16) is 

The last two integrals are always less than the area of integration involved (6’). Thus I6 
is of order (kC2/z) exp(-24;) at most and may be neglected when 4,, >> 1 except in a 
region close to the screen of no physical interest. 

Finally, in region 7 of figure 3 we have x > 6, x ’  > 6, x + x’  > 6, /x - x’/  < 5, so that, 
transforming to sum and difference coordinates 

< exp(-3& 

which is negligible if 40 >> 1. 

(A. 17) 
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Appendix 2 

In this appendix we establish the order of magnitude of the approximation used in § 3.2. 
We first show that the upper limit of the first integral in (3.12) and (3.13) may be 
extended to infinity if do >> 1. In the case of equation (3.12) the additional contribution 
introduced by this approximation is 

Clearly 

IT 

(A. 18) 

(A. 19) 

This correction is of order exp(-&)/4; if 40 >> 1 and is therefore negligible. A similar 
argument can be used in the case of I2 (equation (3.13)). In order to assess the 
magnitude of the second integral in (3.14) we express this quantity in terms of complex 
Fresnel integrals: 

(A.20) 

where 1 = (224: /7~k5~)”~.  The maximum value of the right-hand side is achieved when 
the magnitude of the argument of the Fresnel integrals is a minimum. This occurs when 
1 - &,, but the argument is still large if  >> 1 and since - C(x) - x-* and $-- S(x) - x - ~  
if x is large we see that the integral is of order 1/4: at most and can therefore be 
neglected. 

Turning now to the remaining regions of integration in figure 3 we see that the 
contribution of region 3 to the scintillation index is given by 

--cos( 34; kx (5 - x ) )]. 
6 

(A.21) 

(A.22) 
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If & >> 1 this term is of order exp(-&)/& and may be neglected. The second term may 
be treated similarly: 

exp[2&(x/t - 111 6 

<:J T t i 2  dx X 

(A.23) 

If 40 >> 1 this term is of order l/c$i at most so that overall, I3 is of this order at most and 
may be neglected. 

4 
= - exp(-2&)[Ei(Z&)- Ei(d~i)]. 

T 

The contribution of regions 4 of figure 3 is given by 

4k E dx'/6x'i5dx  cos(<^) kxx' exp[-4:(l+x-x)]. 
TZ 0 5 5  

(A.24) 

Using exactly the same approach as in the case of 13, (A.24) can be shown to be of order 
1/4i at most so that the contribution of I4 to the scintillation index may be neglected to 
this order of accuracy. 

The contribution of region 5 of figure 3 is given by 

Using the same method as before these integrals can be shown to be of order 
exp(-24;)/~#~: at most and are therefore negligible if C#J~ >> 1. 

Region 6 of figure 3 gives a contribution identical to the truncated parabolic case, 
i.e. (A.15), which we have already shown to be negligible except in a region 'unphysi- 
cally' close to the screen. 

Finally the contribution from region 7 of figure 3 to the scintillation index is, after 
transformation to sum and difference coordinates, 

The first integral of each pair in this expression is a Fresnel integral whose value is 
always less than unity. The modulus of the second integral of each pair is always less 
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than (&‘q6:) exp(-2&). Thus 17 is at most of order (kQ2/rq5i)”2 exp(-2&) and may be 
neglected if q5,, >> 1 except in a region very close to the screen which is of no physical 
interest. 

Appendix 3 

In this appendix we evaluate an integral in 0 3.3 and derive an expression for the spatial 
coherence function of the intensity for the Gaussian phase autocorrelation function 
case. 

We first note that the derivation of (3.27) and (3.33) in the text involves neglecting 
terms of order exp(-2d;). This can easily be demonstrated using methods similar to 
those described in appendices 1 and 2. Evaluation of (3.27) is most easily accomplished 
as follows. We first make the transformation x4xQ2/2&d’6, and write q = 
k t2 /2zdoJ6  as in the text (equation (3.32)). The integral then takes the form 

Zl = -;q lo dx l n ( 3 ~ / 2 4 ~ J 6 )  cos(qx) exp(-x2/4). (A.26) 2 “  

If we set Z = Z17r/2q then 

dZ/dq = I x dx ln(3x/2&46) sin(qx) exp(-x2/4) = -2ql-t 7r erf(q). (A.27) 

The last result is obtained through an integration by parts. This differential equation 
can be solved with the help of the integrating factor exp(q2): 

X 

0 

Z(y)= 7r exp(-q2) joq dx exp(x2) erf(x)+l(O) exp(-q2). (A.28) 

I (0 )  is a standard integral (Erdelyi 1954): 
m 

Z(0) = - dx[ln(x)- ln(2doJ(6)/3)] exp(-x2/4) 
0 

so that 

U 1 Il = T [  4 exp(-q2) In( 9) 8 Y 4 2  + lr erfi(q) - 24(7r) 1 dx exp(x2) erfc(x) 

(A.29) 

(A.30) 

which is the expression quoted in the text (equation (3.28)), R ( q )  being the integral 
term. Another useful form for this integral may be obtained using the formula 

T erfi(q) - R ( q )  = ~ ( q )  - 2 + J(r)q-’ exp(q2) erf(q) (A.31) 

where 

In particular note that (A.31) is of order q 2  when (I is small. 
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We shall now evaluate the spatial coherence function (3.36). We first note that 
integration of the first term of this equation by parts gives 

X 

We have extended the upper limit to infinity as in the derivation of (3.27)of the text and 
scaled the variable of integration to obtain this formula. Defining I = I In/29 and 
differentiating I with respect to 9 we eventually obtain in close analogy with the 
derivation of (A.28) above: 

l r  k'x )+e r f (x -  k'x )] I ( q )  = 2 exp(-q2) loq dx exp(x2)[ erf(x + m 2J3z 

I(O)= 1 dx e x p ( - ; ) [ C i ( - - ~ - ) - C i ( ~ ) ]  k'x 
k'XX X 

2 3  (2 21240 0 

(A.35) may be integrated to give 

(A.34) 

(A.35) 

(A.36) 

so that we have, for I , :  

(A.37) 

The second double integral in (3.36) may be evaluated by noting that the upper limit 
( x )  of the x' integration may be extended to infinity as usual without introducing 
significant error. Integrating over x '  obtains 

(A.38) 

The spatial coherence function is the sum of (A.37) and (A.38). Note that the integral 
remaining in (A.37) is only important for large values of 9. For small values of 9 it is of 
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order q 2 .  If we retain powers of q up to the first in this limit, we obtain: 

(A.39) 

which is formula (3.37) of the text. (Ig‘”(z, ,y)l is given by equation (3.21)) 
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